热度 27| ||
在仿真完电路后,除了需要跑PVT外,还需要跑一下蒙特卡洛仿真。
对于PVT,一般是有 ff,ss,tt,fnsp,snfp这些corner(ff Vth小,ss Vth大,fnsp则是fast nmos slow,pmos的意思,即nmos的vth小,pmos的Vth大)。而蒙特卡洛仿真就是跑的管子加入process和mismatch然后跑MC仿真。
如果PVT跑完没有什么问题的话,蒙卡仿真也没什么问题。
对于蒙特卡洛仿真,就是对管子进行随机误差仿真,这里通常会看一个叫3σ准则,即输出结果的误差范围。
3σ准则又叫拉依达准则,是指先假设一组检测数据只含有随机误差,对其进行计算处理得到标准偏差,按一定概率确定一个区间,认为凡超过这个区间的误差,就不属于随机误差而是粗大误差,含有该误差的数据应予以剔除。这种判别处理原理及方法仅局限于对正态或近似正态分布的样本数据处理,它是以测量次数充分大为前提的,当测量次数少的情形用准则剔除粗大误差是不够可靠的。因此,在测量次数较少的情况下,最好不要选用该准则。(源百度)
3σ原则为
数值分布在(μ-σ,μ+σ)中的概率为0.6827
数值分布在(μ-2σ,μ+2σ)中的概率为0.9545
数值分布在(μ-3σ,μ+3σ)中的概率为0.9973
可以认为,Y 的取值几乎全部集中在(μ-3σ,μ+3σ)区间内,超出这个范围的可能性仅占不到0.3%
3σ准则是建立在正态分布的等精度重复测量基础上而造成奇异数据的干扰或噪声难以满足正态分布。如果一组测量数据中某个测量值的残余误差的绝对值 νi>3σ,则该测量值为坏值,应剔除。
通常把等于 ±3σ的误差作为极限误差,对于正态分布的随机误差,落在 ±3σ以外的概率只有 0.27%,它在有限次测量中发生的可能性很小,故存在3σ准则。3σ准则是最常用也是最简单的粗大误差判别准则,它一般应用于测量次数充分多( n ≥30)或当 n>10做粗略判别时的情况。
正态分布具有两个参数μ和σ^2的连续型随机变量的分布,第一参数μ是服从正态分布的随机变量的均值,第二个参数σ^2是此随机变量的方差,所以正态分布记作N(μ,σ2)。
μ是正态分布的位置参数,描述正态分布的集中趋势位置。概率规律为取与μ邻近的值的概率大,而取离μ越远的值的概率越小。正态分布以X=μ为对称轴,左右完全对称。正态分布的期望、均数、中位数、众数相同,均等于μ。
σ描述正态分布资料数据分布的离散程度,σ越大,数据分布越分散,σ越小,数据分布越集中。也称为是正态分布的形状参数,σ越大,曲线越扁平,反之,σ越小,曲线越瘦高