| |
我是清华校友,毕业于1970年。在毕业43年后,能有机会回到母校,在《星火论坛》和大致是二阶代沟的小学弟、小学妹们交换自己大半辈子读书、科研和做人做事的教训、心得和体会,心情既亢奋又忐忑。像一个酿酒老头,正在打开深埋多年的老坛子,不管里边酿就的是醇香的好酒,辛涩的苦酒,还是无心错成的陈醋,它终究历经了一路的沉浮酸甜,承载着厚重的岁月沉淀。它也许会对后来人有所借鉴吧?
题目是林XX同学出的,算是命题作文罢。
1. 读书
按中国的传统说法,在座的都是读书人。读书的重要性是无庸置疑的。咱们不谈功利性的看法,如“书中自有黄金屋,书中自有颜如玉”之类的。只从做学问的角度看,读书是接受前人文化传承最重要的途径。大家都在读书,但可能效果迥异。“如何读书”本身就是一门学问。
1.1 读什么书
1979年诺贝尔物理学奖获得者Glashow除物理学相关知识还修过音乐、东亚历史、法学、文学,甚至电焊。访问他的记者颇感疑惑,问他:“学这么多其他科目对物理学研究难道也有帮助吗?”他回答说:“我想是有的,往往许多物理学问题的解答并不在物理学范围之内,涉猎多方面的学问可以提供开阔的思路,如多看看小说,有空去逛逛公园,都会有好处。这可以提高想象力。它和理解力、记忆力同样重要。”海纳百川,方能成其大。许多中国学者一大弱点是知识面狭,一辈子只能在一个很小的方向上工作。
特别想强调的是:理工科学生要学好语文,文科生当然也要掌握必要的自然科学知识。有人说:“文理相通”,我觉得有一定道理。写文章的逻辑性与数学推理在原则上是一致的。丘成桐说过:“在学好数学的同时,更不能偏废语文。语文的训练是成为真正学者的第一步”。李政道有个题词:“科学人文一肩挑”。所以理工科学生除了专业知识外,还应当抽时间读一点文学的、哲学的、以及社会科学的书籍。
1.2 怎么读书
我想说的是专业书籍。个人认为大约可分为两类:一类是基础性教科书,这类书要精读。例如,我以前没学过图论,前一阵子在学图论,我选了一本入门书“R. J. Wilson,Introduction to Graph Theory”。我一般的做法是:选一本容易读而又比较经典的书,作为教科书仔细读,每个证明都仔细看,每道习题都做。华罗庚说过读书要从薄读到厚,再从厚读到薄。从薄到厚就是精读的过程,弄清每一个概念,包括做笔记,做习题,这是第一步。在掌握了这些内容后,要进行综合和提炼,找出真正需要掌握的精华。将来自己真正能记住的可能就那么一点,但却能运用自如,触类旁通。
我有个朋友,当年和我一起从清华考进科学院研究生院。几十年后相遇,他说了一句话:“我们学了大半辈子数学,其实最后能记住的就是一些框架。”我觉得他说到了点子上,正是这些不多的框架,指导我们进行正确的思维。这大概就是所谓“由博返约,以约驭博”的道理罢。一个人艺多不压身,多修一门课就会多一份本事。
另一类是参考书,包括(除少数需精读的例外)大量的参考文献。这些东西要粗读,掌握你认为有用或有启发的思想、方法。这是一种能力的训练,中学生,甚至大学生都很难做到这一点。但作为一个研究生,特别是在知识爆炸的今天,一定要学会在海量的书籍、文献中过滤出自己所需要的信息。
歌德有一句话:“经验丰富的人读书用两只眼睛,一只眼睛看纸上的话,另一只眼睛看到纸的背面。”这是一种能力的培养,一定要从表面的,多半是赘长的陈述、推理、证明等中摆脱细节,发现它背后的想法、算法或原理。
对于怎样浏览科技参考文献,我还想说一点自己的体会。一是要重视摘要、前言、和结束语。对你不甚了解的新领域,前言几乎是最好的入门书。摘要和结束语常常会告诉你,你看的这篇论文是干什么的,有什么新结果。这些对理解论文很有帮助。二是怎么找参考文献,我的建议是:尽量找最新的,但不一定要细读它。如果你对该方向不太熟悉,可以从最新论文的参考文献中找到该方向的经典论文,不妨从这样的论文读起。
关于泛读,想举一个例子。我最近在做网络演化博弈方面的研究。演化博弈中有一个重要概念叫“演化稳定策略”(Evolutionary Stable Strategy),是由John M. Smith提出的。他有一本经典的书“Evolution and the Theory of Games”,主要讨论ESS。我只看了两章,了解了ESS是怎么回事,同时发现,他的方法不能用于网络化的演化博弈。于是就根据他的思想,提出自己的定义和算法。
总之,个人以为,精读、泛读都很重要。精读增加工具,泛读扩大视野。在科研工作中,两者缺一不可。
1.3 自学能力的培养
我在清华上学的时候,学校经常宣传“猎枪与干粮”的理论,好像说是蒋南翔提出来的。说学校要交给学生的是猎枪而不是干粮。干粮有吃完的一天,而猎枪会让你永远有饭吃。这个说法很有道理。在学校修一门课两门课……那是干粮,而自学能力则是猎枪。美国一个历史学家亨利·亚当斯说过:“一个人年轻时懂了些什么无关紧要,只要懂得如何学习就够了。”(What one knows is, in youth, of little moment;they know enough who know how to learn.)
自己中学的时候,老师介绍看过不少趣味数学或物理小册子。例如华罗庚的《从杨辉三角谈起》,吴文俊的《力学在几何学中的一些应用》,别莱利曼的《趣味物理学》等,这不仅学到不少有用的知识,更重要的是,培养了读书的习惯和自学能力。这种能力让自己受益终生。
自己只上了一年零八个月大学,学的是焊接专业,数学只学过简单的微积分。文革十年,有两段时间,自己自学了几门数学和物理课程,一段是大串联到武斗,还有一段是分到数学教研组后的培训班。我自学了北大的《复变函数》,周伯勋的《线性代数》,格列坚科的《概率论》,艾利斯哥尔兹的《变分法》,还有康帕涅茨的《理论物理》力学部分。自学的方法很简单,就是每道习题都做一遍。故人说:“不动笔墨不读书”,对专业书籍,我把它改成:“不做习题不读书”。
还有一点自己比较得意的是英语,自己从初中到大学,一直学俄语。只是在文革中偷偷学了点英语,还曾因偷看《毛主席语录》英文版被人将大字报贴到宿舍门口。到考研时我虽然一天英语课都没上过,但居然考了80分,算比较高的分数了。这些自学的知识,使我能在文革结束后考上数学所的研究生。
我觉得自己一辈子得益于从中学开始的自学能力的培养,我对奥校之类填鸭式的知识灌输很反感,深信“自己学会读书、学会吸收新知识”才是猎枪,是做学问的真功夫。
2. 科研
科研是知识分子的必经之路,也是知识分子自我表现的舞台。怎样登台,怎样亮相,怎样让自己的表演酣畅淋漓,这绝非我这样的末流演员所能回答得了的。但毕竟在科研上摸爬滚打了多年,算是见过猪跑,讲一点体会和教训罢。
2.1 读书与科研
小时候听过一个笑话:一个秀才在家里愁眉苦脸地搜索枯肠写文章,看他苦不堪言的样子,他老婆就说:“看你们写文章好像比我们生孩子还难。”他回答说:“可不是,你们生孩子肚子里有东西,可我肚子里没东西呀。”这笑话用来比喻读书与发表文章还是很恰当的。
我在美国上学的时候,博士学位只有修课的要求:16门课,48学分,却没有发表论文的要求。我毕业时发了一篇期刊论文,一篇会议论文,按国内标准可能不够毕业。我有的同学毕业时并未发表任何文章,却照样毕业。而我修过的16门课却让我终生受益无穷。
个人以为,从长远看,打好基础比发表几篇论文重要得多。做学问就像盖房子,打不好基础是盖不成高楼的。我招研究生,硕士期间就发表了一堆论文的学生一律不要。你该念书时不念书,就学会拼凑垃圾论文,就像你学武功不练基本功,却学了花拳绣腿,道走歪了么。工欲善其事、必先利其器。搞基础理论研究,肚子里必须有几门过硬的课程当利器。林肯年轻时当过伐木工人,他说过一句话:“如果给我8小时砍倒一棵树,我会花6小时磨斧头。”只有厚积薄发,才能写出好文章。
2.2 选题
对大多数研究生而言,科研选题从读文献,Follow他人的工作开始,大致是对的。除非少数天才人物,科研总要从模仿开始。但模仿有两种,一种是纵向的,就是把人家的方法应用一下,这通常被称为成法套用,就像学生做Homework一样,没什么创新性。另一种是横向的,即发现它不完善的地方或者可以平行发展的地方。这样,你研究的对象与原来问题有所不同,需要一些新的方法或新的思维,这种工作就有一定创新性,可以提高你的科研能力。
通常这种模仿容易出一些小文章,这是必要的。早年听过逻辑学家王浩的一个报告,说:“这种小文章做几篇,知道自己会做了,就不要再做了,要找点大点的问题做。”这种大一点的问题应当是有前途的研究方向。
那么,什么是有前途的研究方向呢?这里想引用何毓琦先生的几段话:“常常有事业刚刚起步的青年科研人员向我询问,什么是有前途的科研方向。人们常常倾向于推荐自己目前正在做的研究,但这样建议别人是自私的,也是危险的。”何先生的建议是:“去找一个人们渴望解决的实际问题,而这个问题又是你感兴趣的,但不太了解的,全身心地投入进去,试图解决这个问题,但不限于使用你熟悉的现有工具。”
何先生提到这种研究方向的几个明显优势:(1)一旦获得成功,就有一些现成的人替你宣传;(2)你可以试图将这个发现拓展为一个全新的研究领域;(3)在一个目前还很少人涉及的研究领域,不用花太多力气学习积累下的文献资料;(4)新课题像新矿,花同样的力气,新矿的产出比老矿高得多。
我想,何先生这里强调的有两点:(1)寻找新的、有意义的问题;(2)发展和使用新工具。我很同意这种观点,自己也有类似的人生体会。
2.3 矩阵半张量积与我
矩阵半张量积是自己比较得意的一项工作。矩阵半张量积是矩阵普通乘法的一种推广,它使普通矩阵乘法可以用于任意两个矩阵而不改变其性质。我在1999年首次提出这种运算。当初主要是用它计算连续系统。2008年开始将其应用于一个新的较热门问题:布尔网络的分析与控制,得到成功。相关工作获国际自动控制联合会(IFAC)颁发的Automatica 2008-2010最佳理论/方法论文奖。
现在,国内至少有包括清华、北大、山大、同济大学等在内的十几个高校,都有教师用矩阵半张量积解决各类问题,国际上有意大利、以色列、美国、英国等学者使用矩阵半张量积。目前本人主要研究矩阵半张量积在博弈论,特别是网络演化博弈中的应用,感觉这是矩阵半张量积的一个大有可为的新领域。
相信新的工具和/或新的领域是产生创新科研成果的不二秘笈。
2.4 创新观念与想入非非
创新观念与想入非非表面上看很难界定,而且,它们的确是存在相关性的。那么,它们的区别在那儿呢?创新观念是建立在坚实的基础上,包括你对问题的来龙去脉的了解和对相关知识的掌握。探索真理只能在掌握前人已有知识和分析已有结论的基础上,然后像胡适所建议的:“大胆设想、小心求证”,缜密的分析、细致的甄别、严格的推理、透彻的论证。这才是理性的创新思维。
量子力学创始人普朗克:“唯有观念才能使实验者成为物理学家,使编年史者成为历史学家,使古抄本鉴别者成为语言学家。”不妨将它归纳如下:创新观念+知识积累=>学术突破。
创新思维需要敢于挑战权威,个人理解就是不迷信权威人士的言论,敢于思考,敢于批评权威的错误,做到真理面前人人平等。但挑战权威要建立在尊重科学的基础上。要敬畏真理,人类社会长期积累下来的,已经被严格证明了的知识,是人类的共同财富。在没有对其深入了解之时就随便挑战它,这就成了想入非非。
辟如一位老先生,他对伽罗华理论一无所知,基本数学训练也极其缺乏,就非要去解五次方程,犯下了很低级的错误。而当别人指出他的错误,所有人都看清楚他错在何处时,他居然还弄不明白,坚持自己“是完全正确的”。这不属于科学探索,而是典型的想入非非。其他一些民数也是如此,他们缺乏专业训练,幻想轻易破解世界难题,一夜成名。
德国著名启蒙思想家和诗人莱辛曾说过一段被黑格尔多次引用的话:“真理不是一枚铸币,现成地摆在那里,可以拿来藏在你的衣袋里。真理是一个过程,是在漫长的、发展的认识过程中逐渐被掌握的;在这一过程中,每一步都是它前面一步的直接继续。”
自然科学发展到今天,科学问题的解决更是如此。最典型的是近年数学上两大难题的突破。怀尔斯证明费马大定理,是建立在一系列前人工作的基础上,包括弗赖将费马大定理转换为椭圆方程,谷山一志村猜想,椭圆方程模型式等。佩雷尔曼证明庞加莱猜想也是如此,Ricci流是以意大利数学家里奇命名的一个方程。当哈密尔顿利用它将不规则流形变成规则流形时,丘成桐就敏锐地提出“可以用这个证明庞加莱猜想。”佩雷尔曼就是按哈密尔顿的方法做下去的,所以他自称:“我是哈密尔顿的门徒”。
马克思说:“在科学上没有平坦大道,只有在崎岖小路的攀登上不畏劳苦的人,才有希望登上光辉的顶点。”这句话是至理名言,希望在科研中一蹴而就是懒汉无知的幻想。