quan228228的个人空间 https://blog.eetop.cn/zhangquan [收藏] [复制] [分享] [RSS]

空间首页 动态 记录 日志 相册 主题 分享 留言板 个人资料

日志

Eye Diagram 眼图(二)

已有 2508 次阅读| 2008-7-24 09:26 |个人分类:USB

识别不同类型的抖动来源,可以减少设计层次的问题,因为不同的器件以不同的方式生成抖动。例如,发射机主要生成RJ。外部调制的激光发射机生成的大多数抖动是由激光器和主参考时钟的随机抖动导致的。相反,接收机生成的绝大部分抖动是DJ,这源于导致ISI的前置放大器和后置放大器连接的AC耦合等因素。直接调制激光发射机受到RJDJ的影响。介质采用两种方式:光纤从色散中增加DJ,从散射中增加RJ;传导介质从有限带宽中增加DJ,与低频和多个反射相比,高频的衰减要更高。

很重要的一点是,要理解抖动分布是由所有抖动源的卷积赋予的。为直观地认识抖动,我们考察一下从‘0’到‘1’的逻辑转换,如图3b所示。标有‘x’的样点距理想转换边沿右面位周期的一半。现在,增加幅度为A的正弦DJ。在波的顶部,边沿从理想边沿朝着样点移动距离A。然后,根据高斯分布模糊边沿的位置,增加RJ。如果边沿移到样点的右面,那么逻辑‘1’码被错误地标为‘0’。在这种情况下,码边沿抖动经过样点的部分时间决定着BER。如果已知抖动原因,则可以计算BER。在本例中,抖动是RJPJ的一个来源,PJ移动边沿距离A及呈高斯分布的区域(3a中的阴影部分),移到样点右面的概率决定着误码概率。这展示了RJDJ分布怎样一起卷积,即一种原因的效应叠加在另一种原因的效应之上,直到考虑了所有原因。

衡量系统功能的最终尺度是BER。抖动分析的目标是确定抖动对BER的影响,并保证系统BER低于某个最大值,通常是10-12BER(T)由码型发生器、误码分析仪和系统时钟组成。数据发生器把码型传送到系统器件上。器件处理码型,把结果传送到误码分析仪,误码分析仪在已知码型上同步,计算收到的码数,确定哪些码接收错误,计算BER。图4BER图,它是样点时间位置BER(t)的函数,这个图称为BERT扫描图或浴缸曲线,简而言之,它在相对于参考时钟给定的额定取样时间的不同时间t上测得的BER。参考时钟可以是信号发射机时钟,也可以是从接收的信号中恢复的时钟,具体取决于测试的系统。图4的时间轴与图1相同,两侧与眼图边沿相对应,样点位于中心。BER一定时,曲线之间的距离是该BER上的眼图张开程度。在样点接近交点时,抖动会导致BER提高到最大0.5。完整的BERT扫描测量是直接衡量BER一定时眼图张开程度的唯一方法。遗憾的是,完整的BERT扫描图需要很长的时间,如在5 Gb/s时需要30分钟。通过集中在眼图边沿进行部分BERT扫描,可以在几秒内,在10-15%的范围内保守地估算任何BER时的眼图张开程度。估算技术是一种近似方式,它对RJDJ概率分布去卷积,然后或多或少地使用高斯RJ,根据图3所示计算BER。关键在于,由于DJ有界、RJ是高斯分布,卷积的分布尾部在BER下限中遵守高斯RJ分布。从高斯分布中推导出的函数,称为互补误差函数,拟合到BERT扫描平滑的下降沿上。然后可以推断拟合的函数,直到任何BER值,以估算眼宽。


此主题相关图片如下:
按此在新窗口浏览图片

4: BER(T)扫描或浴缸曲线,其中误码率是样点时间位置的函数

Bit Error Rati 误码率

Eye Width at BER = 10-12: BER = 10-12时的眼宽

Time, t, relative to the reference clock: 相对于参考时钟的时间t

等时取样示波器上显示的眼图由从多个不同逻辑脉冲上取样的数据组成。“轨迹”由参考时钟提供的触发之后的顺序时间上采集的数据点组成。显示的是一个两维直方图,如图1和图2所示。某个点上的颜色或亮度用来衡量该电压或功率上相对于触发信号的时间上发生的样点数量。取样示波器可以把一个像素宽的交点块投到时间轴上,构成眼图交点直方图(2),测量抖动输出。眼图交点直方图近似计算信号抖动输出的概率分布函数。

BERT扫描情况下,通过对RJDJ近似去卷积,可以从眼图交点直方图中估算BER,这基于这样一个事实,即在远离交点时,抖动分布主要取决于高斯RJ。把直方图的尾部与高斯分布匹配起来,提供了一个函数,然后可以在眼图中推断这个函数,并用来估算BER一定时的眼宽。数据集合和分析与高速取样时间间隔分析仪中基本相同。交点直方图拟合的宗旨与拟合BERT扫描的宗旨类似,但BERT扫描技术的速度和精度都要高得多。通过拟合直方图获得的某种高斯形状在一定程度上受到随机波动的影响;BERT扫描只取决于数据转换是否在样点上波动,而不取决于其波动的精确时间位置。因此,使用BERT进行测量要比低概率波动强健得多,后者的拟合可能会偏向交点直方图。部分BERT扫描的拟合速度要比交点直方图的拟合速度快得多,因为BERT数据集是在完整的数据速率上采集的,而直方图则是通过以低得多的速率对信号取样构建的。

对于高斯RJ能否精确地描绘交点直方图或BERT扫描的低BER的尾部,人们还存在争议。这种真正的随机流程会导致抖动,抖动遵守高斯分布并不存在问题,但这些流程可能并不是抖动分布尾部的主要因素。问题在于,多种小的效应之和,会构成接近高斯的分布。统计理论的中心极限定理体现了这一点:数量无穷大的小流程之和会遵守高斯分布。这意味着多个低幅度的DJ流程会卷积到一个仅在钟形曲线中心、而不是尾部接近高斯分布的分布函数。但是尾部才是高斯假设对估算BER最重要的地方。可能在某些情况下,真正的RJ只占似乎是高斯分布的抖动的一小部分。如果是这样,那么用来从拟合快速BERT扫描测量和直方图拟合中估算BER所使用的技术,可能会在总体上高估实际BER。尽管近似方法总是要小心出现错误,但在高斯分布没有很好地描述尾部时,它可能会迫使制造商设计的抖动余量超过必要的水平。幸运的是,通过以BER = 10-12的误码率水平执行全面的BERT扫描测量,进而可以把拟合技术与整个测量进行对比,检查这种情况并不难。

在抖动分析中,有两个不同的频域:时钟频率定义了时钟信号的额定交叉时间,抖动频率则是相对于额定交叉时间,时钟交叉的时间位置变化的频域。例如,周期抖动会导致时钟信号变化大约额定的时钟交叉量。结果,数据信号的抖动频率限于低于时钟频率的一半。

分析解调的抖动信号或相噪是一种强大的诊断技术。可以使用相位检测器解调相位,在频谱分析仪的抖动-频率域中或在示波器上的时域中进行分析。由于相位检测器只能解调时钟信号,要求专门的时钟恢复(CR)电路来分析数据信号。为把数据上的抖动传送到恢复的时钟中,而且没有失真,CR必须有:

1. 低抖动输出 CR抖动提高了本底噪声,因为CR抖动的响应可能会干扰器件的抖动,而不能完全减去抖动响应;

2. 平坦的转函,这样抖动信号不会失真;

3. 带宽要足够宽,能够在相关的抖动-频段中传送抖动。

带宽标准限制着基于相位检测器的系统的分析范围。在SONET/SDH等应用中,数据恢复电路的带宽很好地界定了滚降频率,相位检测器电路可以设计成适合应用的带宽。


此主题相关图片如下:

按此在新窗口浏览图片

5: 相噪频谱密度/单边带相噪图

 

5是时钟信号的相位频谱密度:每个单位的抖动-频率带宽的均方相位变化。它等于单边带(SSB)功率频谱。在图5中,RJ提供了频谱中的连续背景,可以理解为闪烁、随机漂移和白噪声成分。通过分析相噪频谱,可以识别和分隔不同类型的DJ:在图5中,在低抖动-频率上,60 Hz拾波及其谐波上升到连续背景上方的杂散信号,大约2 kHz上的宽拐角是锁相环滚降点,5 MHz周围的PJ非常明显。通过在希望的带宽上求积分,可以从频谱中提取rms抖动。

通过使用具有专用相噪功能的频谱分析仪,还可以从时钟信号的频谱中提取SSB频谱。与相位检测相比,这种方法有两个系统问题。首选,频谱不能区分幅度噪声和相位噪声。低噪声、高带宽的限制放大器可以降低这种效应。第二,频谱分析仪的滤波形状允许载波附近的某些高幅度噪声泄漏出去。另一方面,使用频谱分析仪提取SSB频谱的优点是带宽高。因此,结合使用抖动频率带宽高达约100 MHz的相位检测器与具有覆盖最高时钟频率一半的相噪专用功能的频谱分析仪,可以提供一种强大的抖动诊断工具。

在较低的数据速率下(B < 3 Gb/s),可以使用实时示波器捕获连续数据流的一个长段。数据集由段中每个数据转换的带有时间标记的交点组成。与取样技术或BERT扫描中的数据不同,数据可以在时域和抖动频率域之间来回变换。可以在抖动-频率域中识别确定性流程,与相噪分析技术相比,可以隔离时域中的效应,而相噪分析技术则测量功率频谱,而没有完整的合成幅度。但是,实时示波器上的抖动分析也有自己的缺点:数据集合的数字转换分辨率有限,数据段的长度受到示波器内存深度的限制。内存深度有限还具有矩形窗口效应,导致抖动频谱中窄的空信号,限制可以观察到的最低抖动频率。将不能分析周期长于捕获长度所发生的抖动效应。

在同步系统中,在通过系统传播时,抖动会在不同器件之间提高。抖动转函检定器件怎样作为抖动频率的函数传播抖动,可以用来理解器件的频响,而不管它是否是在SONET/SDH中指定的。规定幅度和频率的正弦抖动信号适用于传送到器件上的数据,将在应用的抖动频率上测量这些器件的输出抖动幅度,如基于相位检测的测试仪。抖动转函应小于或接近低抖动频率上的元素,其中接收机对抖动更加强健,而在规定的接收机滚降频率上,则要远远低于抖动频率上的单位。

抖动容限衡量接收机在不降低BER性能的情况下对抖动的容忍能力。它是用于器件的、导致相当于灵敏度降低1 dB的正弦抖动的幅度。在测试时,首先在没有增加抖动的情况下测量器件的BER,然后降低信号功率,直到误差始点或直到超过规定的BER。然后把信号功率提高1 dB,并增加正弦抖动,传送信号。得到的抖动幅度就是该频率上的抖动容限。容限要求符合一个模板,其中对低频幅度大,对高频幅度小。

SONET/SDH已经很好地定义了频带有限的抖动输出、转函和容限要求,但许多高速异步技术的抖动规范仍在发展。对发射机,10 GB以太网规范限制着发射机色散代价(TDP)TDP是必须增加到色散链路中的发射机上的衰减水平,以把BER提高到非色散链路中的参考接收机的水平,其样点波动范围为5 psTDP是一种限制抖动输出的方法。对接收机,将执行受压眼图接收机灵敏度测试,检验接收机在接收可以允许的最坏情况信号时,能否在低于10-12BER水平上运行。测试信号设计成模拟各种极限条件,包括RJDCDISIPJ。与SONET/SDH中一样,抖动容限测试作为增加的抖动-频率的函数,但它还包括其它极限条件。

抖动测量的精度受到本底噪声和复现度的限制。本底噪声是系统生成的平均抖动,有时称为测试设备固定误差,取决于测量的带宽。噪声可能会波动到平均值以上,测量结果可能会波动到实际值之下,本底噪声和复现度相结合,决定着测试仪可以观察到的最低抖动。经验法则是可以观察到的最低抖动比本底噪声之上的复现度低两个单位。

不同的抖动检定方法具有不同的优点,其提供的结果可能很难比较,因为它们通常系统地测量不同的项目;但是,良好定义的一致性测试必须允许进行普遍比较。SONET/SDH是比较成熟的抖动标准,它可以在不同测试集合的本底噪声和复现度指标内部,比较单独的频带有限的抖动输出、转函和容限指标。但是,新兴技术中测试方法的激增,鼓励粗心大意地比较衡量不同数量的结果。例如,在BERT扫描中,从眼图张开测量中得到的总抖动完全不同于简单的峰到峰抖动测量。比较微妙的比较是把从BERT测量中推断得出的BERBERT和取样示波器或TIA上测量的结果分开。在这两种情况下,通过拟合分布中BER低的尾部,可以近似地进行RJ/DJ去卷积,但去卷积近似计算中测量的系统不确定性,即外部效应和测得的分布之差很难量化。问题在于,测量结果的比较精度取决于其不确定性和所有不确定性,必须考虑所有不确定性,而不管是固有的不确定性(如本底噪声和复现度)还是相对的不确定性(如流程差异)

在同步系统器件和异步系统器件中,在诊断方面,抖动测量的目标是识别导致错误的事件;在一致性测试方面,则是检验器件是否生成可以接受的误码率。在高速数据速率上检定抖动的基本方法有三种,即取样、实时相位检测和测量BER。取样技术可能会漏掉概率低的或瞬时的事件,但会在时域中有效地以可视方式表明系统性能;相位检测的频带有限,但在抖动-频率域中提供了杰出的诊断信息;误码率指标测试每个位,提供了基础的相关质量BER。各种标准正在不断发展,可以在整个眼图中迅速近似获得BER。在RJ占分布尾部主要部分的假设条件下,通过近似去卷积把RJDJ分开的这种常用方法是存在争议的,在更好地理解抖动来源和分布时,这种方法将向前发展。随着业内更详细地研究新兴技术,抖动分析技术和一致性测试要求将象此前的SONET/SDH一样趋于稳定和成功。

眼图一般是对高速串行数据进行测试的,由于数据的随机变化,就能看到完整的眼,而时钟信号是规则变化的,是看不到眼的。

普通示波器不支持眼图模式,高速示波器带有眼图模式,可以看眼图。不过建议还是用专用的眼图仪来测试眼图指标。

测试一个信号的眼图,必需要有一个与信号同步的触发时钟,这个时钟即可以用CDR模块直接从信号中提取,也可以用现成的同步时钟信号。

在这个时钟的同步下,眼图仪将每个时钟周期的信号波形重叠在一起,逐渐的就形成了眼图,时间越长,重叠的信号波形个数就越多。

从“眼图”上可 以观察出码间串扰和噪声的影响,从而估计系统优劣程度。另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能

【转载】

可知,眼图 “眼睛” 张开的大小反映着码间串扰的强弱。 “眼睛”张的 越大,且眼图越端正,表示码间串扰越小;反之表示码间串扰越大。

1.间串扰的双极性基带脉冲,由于扫描线所得的每一个码元波形将重叠在一起,所示的线迹细而清晰的大 “眼睛

2.间串扰的双极性基带脉冲序列,由于存在码间串扰,此波形已经失真,扫描迹线不会完全重合,于是形成的眼图线迹杂乱且不清晰, 眼睛 张开的较小,且眼图不端正


点赞

评论 (0 个评论)

facelist

您需要登录后才可以评论 登录 | 注册

  • 关注TA
  • 加好友
  • 联系TA
  • 0

    周排名
  • 0

    月排名
  • 0

    总排名
  • 0

    关注
  • 3

    粉丝
  • 0

    好友
  • 0

    获赞
  • 2

    评论
  • 286

    访问数
关闭

站长推荐 上一条 /1 下一条

小黑屋| 关于我们| 联系我们| 在线咨询| 隐私声明| EETOP 创芯网
( 京ICP备:10050787号 京公网安备:11010502037710 )

GMT+8, 2024-5-7 02:24 , Processed in 0.014078 second(s), 7 queries , Gzip On, Redis On.

eetop公众号 创芯大讲堂 创芯人才网
返回顶部