| |
那末什么是SAR 呢? 顾名思义, SAR实质上是实现一种二进制搜索算法。所以,当内部电路运行在数兆赫兹(MHz)时,由于逐次逼近算法的缘故,故ADC采样速率仅是该数值的几分之一。为了使SAR ADC在很宽的范围上得到应用,那就应该对SAR(逐次逼近寄存器型)的ADC有一个全面的理解。首先对SAR ADC的结构分析。
模拟输入电压(VIN)由采样/保持电路保持。为实现二进制搜索算法,N位寄存器首先设置在中间刻度(即:100…00,MSB为‘1’)。这样,数字模拟转换器(DAC)输出(VDAC)被设为VREF/2,VREF是提供给ADC的基准电压。然后,比较判断VIN是小于还是大于VDAC,如果 VIN>VDAC,则比较器输出逻辑高电平或‘1’,N位寄存器的MSB保持‘1’。相反,如果VIN < VDAC ,则比较器输出逻辑低电平,N位寄存器的MSB清为‘0’。随后,SAR控制逻辑移至下一位,并将该位设置为高电平,进行下一次比较。这个过程一直持续到最低有效位(LSB)。上述操作结束后,也就完成了转换,N位转换结果储存在寄存器内。
图2是一个4位转换器。y轴及图中的粗线表示DAC的输出电压。本例中,第一次比较表明VIN
注意,对于4位ADC需要四个比较周期。通常,N位SAR ADC需要N个比较周期,在前一位转换完成之前不得进入下一次转换。由此可以看出,该类ADC能够有效节省功耗和空间,当然,也正是由于这个原因,分辨率在14位至16位,速率高于几Msps的逐次逼近ADC及其少见。一些基于SAR结构的微型ADC已经推向市场。例如,采用QSPITM串行接口的 MAXlll5-MAXlll8系列8位ADC以及采用微小的SOT23封装,分辨率更高的可互换产品-10位MAXl086和12位MAXl286,尺寸只有3mm×3mm。兼容于I2C接口的MAXl036/MAXl037可将四路、8位ADC和一个基准源集成在SOT23封装内。
SAR ADC的另一个特点是,功率损耗随采样速率而改变,这一点与闪速ADC或流水线ADC不同,后者在不同的采样速率下具有固定的功耗。这仅对于低功耗应用或者不需要连续采集数据的应用是非常有利的(例如,用于PDA数字转换器的MAXl233)。
SAR的深入分析
SAR ADC的两个重要部件是比较端和DAC,可以看到,图1中采样/保持电路可以嵌入到DAC内,不作为一个独立的电路。
SAR ADC的速度受限于:
1、DAC的建立时间,在这段时间内必须稳定在整个转换器的分辨率以内(如:1/2 LSB)。
2、比较器,必须在规定的时间内能够分辨VIN与VDAC的微小差异。
3、逻辑开销。
流水线ADC
流水线ADC(如MAXl200)采用一种并行结构,并行结构中的每一级同时进行一位或几位的逐次采样,特有的并行结构提高了数据的吞吐率,但要以功耗和延迟为代价。
所谓延迟,在此情况下定义为ADC采样到模拟输入的时间与输出端得到量化数据的时间差。例如,一个5级流水线ADC至少存在5个时钟周期的延迟,而SAR只有1个时钟周期的延迟。需要注意的是,延迟的定义只是相对于ADC的吞吐率而言,并非指SAR的内部时钟,它是吞吐率的许多倍。
闪速ADC
闪速ADC(如MAXll7/MAXl04)由大量的比较器构成,并包括一个宽带、低增益预放大器和锁存器。预放大器仅提供增益,不需要高线性度和高精度,只有比较器的门限值必须具有较高的精度。所以,闪速ADC是一种能够提供最高转换速率的结构。提高速度所面临的最大难题是要折衷考虑功耗和尺寸。极高速的8位闪速ADC,例如MAXl04/MAXl06/MAXl08(以及它们的折叠/内插变种)具有高达 1.5Gsps的采样速率。但很难找到10位的闪速ADC,而12位或更高位闪速ADC还没有商用化的产品。分辨率每提高1位,闪速ADC中比较器的个数将成倍增长,同时还要保证比较器的精度是系统精度的两倍。而在SARADC中,提高分辨率需要更精确的元件,但复杂度并非按指数率增长。当然,SARADC的速度是无法与那些闪速ADC相比较的。
∑-△ ADC
传统的过采样/∑-△转换器被普遍用于带宽限制在大约22kHz的数字音频应用。近来, 一些宽带∑-△转换器能够达到1MHz至2MHz的带宽,分辨率在12位至16位。这通常由高阶E-A调制器(4阶或更高)配合一个多位ADC和多位反馈DAC构成。
∑-△转换器(如MAXl400/MAXl403)具有一个先天的优势,即不需要特别的微调或校准,即使分辨率达到16位至18位。它们也不需要在模拟输入端增加快速滚降的抗混叠滤波器,因为采样速率要比有效带宽高得多。
∑- △转换器的过采样特性还可用来“平滑”模拟输入中的任何系统噪声。然而,∑-△转换器要以速率换取分辨率。由于产生一个最终采样需要采样很多次(至少是 16倍,一般会更多),这就要求∑-△调制器的内部模拟电路的工作速率要比最终的数据速率快很多。数字抽取滤波器的设计也是一个挑战,并要消耗很多硅片面积。在不远的将来,速度最高的高分辨率∑-△转换器的带宽将不可能高出几兆赫兹很多。
总结
综上所述,SARADC的主要优点是低功耗、高分辨率、高精度、输出数据不存在延迟以及小尺寸。由于这些优势,SARADC常常与其它更大的功能集成在一起。SAR结构的主要局限是采样速率较低,并且其中的各个单元,如DAC和比较器,需要达到与整体系统相当的精度。