

A/D、D/A原理与指标

动态指标:

- 信噪比(SNR) 是输出端信号功率与总的噪声功率的比 (通常采用正弦输入来测量)
- 信号与噪声加失真的比(SNDR)
 是当输入为正弦时,输出端信号功率与总噪声及谐波 功率的比.
- ・有效位数(ENOB)

定义为:

$$ENOB = \frac{SNDR_p - 1.76}{6.02} \tag{8}$$

其中 SNDR_p是 转换器SNDR峰值的分贝表示.

• 动态范围 是满量程正弦输入功率与 SNR=0 dB 时 的正弦输入 功率的比值.

• A/D 转换器的分类
• 按采样频率划分:
– Nyquist 采样A/D
— 过采样A/D
 · 按性能划分:
— 高速度A/D
— 高精度A/D
• 按结构划分:
- 串行
- 并行
- 串、并行

ADC指标测试方法

- •静态指标——码密度测试(CDT)
- 动态指标——采样与FFT频谱分析

码密度测试 (CDT)

- •码j的密度(码概率)对应于码宽V_{j+1}-V_j
- 输入信号波形选择: 三角波 or 正弦波?
- 输入信号频率: fin与fs的关系
- 样本总数的确定

妈密度测试——样本总数的确定
为了 將静态特性的测试精度以(1- a)%的可信度控制在± β LSB以内, 连续采样的
推木数Nt须满足下式:

$$N_t \ge \frac{Z_{a/2}^2 \pi 2^{n-1}}{\beta^2}$$

其中, Zx = Z:F(Z) = 1-X
 $F(Z) = \int_{-x}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-t^2} dt$
例如, n = 10 bits, β = 0.1 LSB, a = 0.01(Z_{0.005} = 2.58), 则
 $N \ge \frac{(2.58)^2 \pi 2^9}{(0.1)^2} = 1.07 \times 10^6$

- 数据转换中常用的码的类型

Binary	00	01	10	11
Thermometer	0 0 0	0 0 0	0 0 1 1	0 1 1 1
1-of- <i>n</i>	0 0 0	0 0 0	0 0 1 0	0 1 0 0

A/D、D/A转换器结构综述

Reference: Principles of Data Conversion System Design Behzad Razavi

6. 亚稳定性(metastability)
由于flash结构需要比较器,因此易出现亚稳定性误差。
当比较器输入差别较小时,就会出现亚稳定性,使电路需要较长的时间才能产生稳定的逻辑输出。
如果ADC输入信号的瞬时值与其中一个比较器的参考电压值很接近,则这个比较器将在较长时间内不确定,可能会对某种转换带来错误的数字输出。

•	时钟偏移
	- flash 结构的分布特性(distributed nature)产生的独 特问题。在日本单前端采样一但特神士器的结构中不
	行问题。在只有里加瑞术件一保持成人奋的结构中小存在。
	- 由于模拟信号和时钟在较大的ADC芯片中必须经过很
	长距离。不问的贝教会经历不问的延时。而且田宁互连线的分布电阻和电容,使方波的转换变慢,即使是
	相同的负载,时钟波形(理想方波)也会发生改变一 一偏移。
	 – 所以,模拟信号和时钟边缘之间的确切时间差别从芯 片的一边到另一边是不同的。
	- 在采样波形中引起谐波失真。

Thermo	ometer Gr	ray Binary	71 o-	1	Latch	and indent
T1 T2 T3	$T_4 T_5 T_6 T_7 G_3 G_3 G_3 G_3 G_3 G_3 G_3 G_3 G_3 G_3$	G ₂ G ₁ A B C	130- T50-		님권	Latch
000		0 0 0 0 0 0 0 0 0 1 0 0 1	T70-		Latch	
1 1 0 1 1 1	0 0 0 0 0 0 0 0	1 1 0 1 0 1 0 0 1 1	T20-		Lateh	Latch
111	1 0 0 0 1 1 1 0 0 1	1 0 1 0 0 1 1 1 0 1	T60-			Laten
1 1 1						
iii 12 相应	1111 1 的温度计码	8 	74 ⊶	图2.1	Latch [3 带有流水线的(Latch Gray编码
;;; 12 相应	1111 []1	8 1 │1 1 1 、Gray码及二进制 Code	74。]]码 ter	图2.1 Gray Code	Latch 3 带有流水线的(Equivalent Decimal Output	Latch Gray编码
i i i 12 相应	1111 1 的温度计码。 No Sparkle:	8 1 1 1 1 、Gray码及二进制 Code 	740	图2.1 Gray Code 1011	Latch 13 带有流水线的C Equivalent Decimal Output 13	Latch Gray编码
i i i 12 相应	11111 1 前温度计码。 No Sparkle: One Sparkle	8 1 1 1 1 、Gray码及二进制 <u>Thermoment</u> <u>Code</u> 111111111111111111111111111111111111	740	图2.1 Gray <u>Code</u> 1011 1000	Latch 13 带有流水线的C Equivalent Decimal Output 13 15	Lateh— Gray编码

- •减法器与精细A/D级间的接口
 - 由于两步结构通常用于10bit以上情况,如果接口不需 要任何放大,则精细级比较器必须正确处理细小的电压。
 - 如果减法器后面跟一个增益为A的放大器,则精细级所需的分辨率可以在同等情况下放宽,但增加了延时,并带来了非线性。A必须严格控制,以使减法器的满量程输出与第二级的满量程参考电压相匹配。
- 亚稳态带来的误差

如果SHA的输出与粗分级中的一个比较器的参考电压 非常接近,则这个比较器就会在很长时间内输出不确 定的逻辑值。这个误差可能会严重地影响到DAC产生 的模拟估算值,从而给整个数字输出带来较大的错误。

 当减法器的增益比理想值大时,ADC表现出失级 (missing level)。

避免失码与失级的方法:

使减法器的满量程输出与第二级的满量 程输出相等。即使第二级的满量程参考 电压具有与减法器相等的增益误差,这 可以通过将第二级的满量程参考电压用 一个减法器描述的电路来实现[9,29]。

2. 折叠 (folding) 结构 从 flash 及两步ADC 发展而来: flash 结构: 一步工作,不需模拟后处理; 但硬件代价大,时序问题严重。 两步结构: 硬件少; 但需前端采样一保持电路和模拟后处理,两步延时。 折叠结构: 进行模拟预处理来减少硬件,同时保留flash的一步特性。

3. 插值折叠 (folding with interpolation)

• 基本思想:

利用折叠特性又不带来额外非线性。

- 折叠特性中的过零点处的非线性为0。

- 只考虑这些过零点,则V_{in}与V_{ri}之差的极性可被正确确定。
- 采用插值的办法产生额外的过零点来解决低位。

- 对于插值因子大于2的电路,折叠信号与理想三角波的偏差会带来差分非线性。 - 在 $V_{r(j+1)}$ - $V_{rj} \approx 5 V_T$ 时DNL达最小。
 - 可通过非线性插值来减小非线性误差,即在插值网络中使 用不相等的电阻。
- 粗分级与折叠放大器的时序误差。
 - 由于这两个电路的固有差别,在模拟信号中引入了不相等的延时,表现为对后面锁存器输入的微小差别。使粗分级可能会"指向"折叠特性的错误循环。
 - 常采用不同的校正技术消除。[24, 25]

(四)流水线结构A/D (pipelined) 流水线概念 每一级对一个采样进行一个操作,并为后面的采样器提供输出,当采样器接到数据,对下一个采样开始相同的操作。这样,在任意一个给定时间里,所有级都在同时处理不同的采样值。 输入输出的速度只决定于每一级的速度和下一级采样器的接收时间。(每一级都有采样-保持功能)

(七) 过采样 ΣΔ A/D (oversampling sigma-delta)

概述

传统的高精度A/D变换器:

- 主要采用flash并行比较、逐次逼近、双斜积分等技术 来实现。是以器件的高精度和电路的复杂性为代价的。
- 其模拟器件通常采用双极工艺,很难与大规模数字系统进行单片集成。
- 为了防止混叠噪声的影响,需要高性能的前端抗混叠 滤波器,增加了对设计和工艺的要求。
- VLSI技术的发展使芯片电源电压进一步下降,模拟电路的信噪比恶化。
- 因此传统的A/D变换器难以与数字电路进行单片集成。

过采样 ΣΔ A/D:

- 采用过采样技术与ΣΔ调制器的噪声整形技术对量化噪 声进行双重抑制,使基带内信噪比大大提高。
- 信噪比的提高,可使A/D变换器达到很高的精度。

由于A/D变换器的精度每增加1 bit, 信噪比需提高约6dB左右: 如信噪比为97dB即可达到16 bit的精度。

- 适于VLSI技术的发展,并且能以较低的成本实现高精 度A/D变换。

采用过采样ΣΔ调制技术,大大缓解了对前置抗混 叠滤波器的性能要求,使A/D变换器中数字电路的比 例增加,模拟电路的比例减少,对模拟电路精度的要 求降低。

• 过采样技术
 - 过采样是指以远远高于奈奎斯特采样频率的频率对模 拟信号进行采样。
 由信号采样量化理论可知,若输入信号的最小幅度大 于量化器的量化阶梯△,并且输入信号的幅度随机分 布,则量化噪声的总功率是一个常数,与采样频率 f_s 无关,在 0 ~ f_s/2的频带范围内均匀分布。
 因此量化噪声电平与采样频率成反比,提高采样频率,可以降低量化噪声电平,而基带是固定不变的,因而减少了基带范围内的噪声功率,提高了信噪比。
 一理论上讲,采样频率越高,输出基带内的量化噪声功 率越低。

- C_m与C_{m-1}+...+C₀之间的失配用P节点的残余电压(V_{res,m})来表示。
 比较器与CDAC对V.....进行逐次逼近数字化。这一过程重复
 - 比较器与CDAC对V_{res,m}进行逐次逼近数字化。这一过程重复 进行,得到C_j与C_{j-1}+...+C₀ (j=m-1,..., 1)之间的失配。生成 了数字表示的V_{res,m-1},..., V_{res,1}。
 - · 对于数字输入D_mD_{m-1}...D₁,由电容失配引起的误差电压可表示为:

- ・ (ΔC/C)_i 表示C_i的相对失配。
- V_{ej} 可以根据V_{res,j} 计算,并存储在数据寄存器中。可以确定任 意数字输入在输出端的误差电压。

结构	全并行 [2]	两步 [3]	折叠-插值 [4]	流水线 [5]	多路交 织 [6]	Δ-Σ ISSCC19 94
速度	200M	5M	200M	20M	40M	100K
分辨率	6bit	12bit	6bit	10bit	10bit	16bit
工艺	0.6 µ m	1.0 µ m	0.5 µ m	1.5 µ m	1.0 µ m	1.2 µ m
面积	2.7mm ²	1.2*3.0mm ²	≈0.4mm ²	3.2*3.3mm ²	42mm ²	
功耗	380mW	200mW	≈150mW	35mW	565mW	40mW
作者		B. Razavi	X. C. Jiang	T. B. Cho	D. H. Fu	Dedic

Problem. 3 (40 points) For the amplifier shown below find I_B, n and W/L's of all PMOS devices to meet the following specifications: Open-loop voltage gain A_{vo} (V_{id} = 0) 250 Unity gain bandwidth f_u 20MHz Slew rate SR 100V/µs Parameters: $\mu_n C_{ax} = 100\mu A/V^2$, $\mu_p C_{ax} = 50\mu A/V^2$, $V_{THn} = 1V$, $V_{THp} = -1V$, $\lambda_n = \lambda_p = 0.02V^{-1}$, $\gamma = 0$, $C_j = C_{ol} = 0$, $L_D = 0$, all $L = 2\mu m$